CORPORATE LOAN SPREADS AND ECONOMIC ACTIVITY

Anthony Saunders NYU Stern

> Sascha Steffen Frankfurt School

Alessandro Spina CBS

Daniel Streitz IWH, Jena, CBS

May 2023

MOTIVATION

Corporate bonds (red), Corporate loans (blue)

MOTIVATION

- Credit spreads derived from bond and loan markets encode useful information
 - Bond credit spreads capture the least constrained firms, misses firms most sensitive to financial frictions
- \rightarrow This paper: Novel dataset to exploit the unique information contained within corporate *loan* spreads:
 - Improve economic forecasts
 - Measure financial frictions

CONTRIBUTION

- 1. Introduce new credit spread that has economically large predictive power (beyond existing measures)
 - Important for academics and policy makers
- 2. Add to the debate on what types of frictions matter for the business cycle. Loan spreads capture both borrower and intermediary balance sheet constraints
 - Relax implicit assumption that the same frictions apply across bond and loan markets. Focusing only on bond market underestimates borrower frictions

SECONDARY LOAN MARKET TRADING VOLUME

DATA

- Daily secondary market prices (mid quotes) of loans from the Loan Syndication and Trading Association (LSTA)
 - 1999 to Q1 2020 period, U.S. non-financial firms, TL, >300,000 loan-month observations (\sim 1,200 loans outstanding per month)
- LPC Dealscan matched to LSTA using LIN
 - Loan amount/spread > cash flows + contract terms
- Bond information
 - Gilchrist and Zakrajšek (2012), TRACE, and Mergent FISD
- Macro variables: FRED, BEA, BLS

► Loan Market - Liquidity

AGGREGATE LOAN SPREAD

- "Bottom-up" spread
 - Qrt. cash flows: coupon using 3m forward LIBOR + AISD \rightarrow yield-to-maturity $y_{it}[k]$
 - Synthetic risk-free loan w/ same cash-flow profile \rightarrow yield-to-maturity $y_{it}^{f}[k]$
 - DCF using cont. comp. zero-coupon Treasury yields (Gürkaynak, Sack, and Wright, 2007)
 - \rightarrow Loan spread (for each loan): $S_{it}[k] = y_{it}[k] y_{it}^{f}[k]$
 - \rightarrow Aggregate loan spread: $S_t^{Loan} = \frac{1}{N_t} \sum_i \sum_k S_{it}[k]$

LOAN SPREAD (1999-2020)

Loan spread (blue), GZ bond spread (red), Baa (black), CP-Bill (purple)

7 / 29

FORECASTING ECONOMIC DEVELOPMENTS

$$\Delta y_{t+h} = \alpha + \beta \Delta y_{t-1} + \gamma_1 \Delta S_t + \lambda_2 T S_t + \lambda_3 RFF_t + \epsilon_{t+h},$$

- Δy is the log growth rate of a macro variable (in this talk mainly industrial production. Various other measures in paper)
- S_t is a credit spread or other indicator
- TS_t is the term spread and RFF_t real effective fed fund rate
- Estimated with OLS, Newey-West/H-H s.e., coefficients are standardized

BASELINE RESULTS

			Industrial Pro	duction; For	recast horizo	n: 3 months		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\Delta S_t^{CP-Bill}$		0.081						
$\Delta S_t^{Baa-Aaa}$		(0.515)	-0.276					
ΔS_t^{HY-AAA}			(3.000)	-0.252				
ΔS_t^{Bond}				(-3.520)	-0.207			
ΔS_t^{Loan}					(-2.650)	-0.405		-0.356
$\Delta S_t^{Bond PC}$						(-5.600)	-0.253 (-3.540)	(-4.590) -0.115 (-1.690)
FFR	√.	v	√.	✓.	✓	✓	√.	\checkmark
Term Spread	√ 0.100	√ 0.100	√ 	√ 	√ 0.000	√ 0.005	√ 	√
Adj K ²	0.189	0.192	0.262	0.249	0.228	0.335	0.249	0.343
$IIIC R^{-}$	-	+0.03	+0.073	+0.000	+0.039	+0.140	+0.06	+0.154
Obs	241	241	241	241	241	241	241	241

→ Hansen Hodrick SE → Europe → OOS → LP

ALTERNATIVE OUTCOME VARIABLES

		Forecast horizon: 3 months								
	IP	PEMP	UE	TCU	NEW	INV				
	(1)	(2)	(3)	(4)	(5)	(6)				
ΔS_t^{Loan}	-0.356 (-4.590)	-0.251 (-3.626)	0.356 (3.016)	-0.328 (-4.651)	-0.266 (-3.687)	-0.230 (-3.598)				
Term Spread FFR $\Delta S_t^{Bond PC}$	\checkmark	\checkmark	\$ \$ \$	\checkmark	\$ \$ \$	\checkmark				
Adjusted R ² Incremental R ² LR Test(χ^2) Observations	0.343 +0.154 33.26 241	$0.671 + 0.054 \\ 35.14 \\ 241$	0.283 +0.125 33.01 241	0.383 +0.133 30.21 241	0.138 +0.071 15.98 241	0.577 +0.067 23.68 241				

► Alternative timing - A ► Alternative timing - B

Alternative outcome variables - Loan Spread

11 / 29

DYNAMICS - LOCAL PROJECTIONS

ROBUSTNESS - "KITCHEN-SINK"

			Forecast horiz	zon: 3 months		
	(1) IP	(2) PEMP	(3) UE	(4) TCU	(5) NEW	(6) INV
ΔS_t^{Loan}	-0.271 (-4.375)	-0.164 (-3.500)	0.150 (2.955)	-0.237 (-4.269)	-0.236 (-4.180)	-0.137 (-2.299)
Term Spread FFR ΔS_t^{Bond} Bid-Ask SP500Ret VIX	$\begin{array}{c} \checkmark \\ \checkmark \end{array}$					
Observations	241	241	241	241	241	241

SUMMARY OF MECHANISMS

- What explains the *relative* predicitive power of the loan spread vs other credit spread?
- 4 groups of explanations:
 - No Frictions: Prices contain forward looking information about firm fundamentals
 - Frictions: Exposure to financial frictions (borrowers/intermediaries)
 - Investor Demand: Differential investor demand in loan vs bond markets
 - Behavioural: Exposure to behavioural biases

- While all financial asset prices should reflect investors' expectations, credit markets might be particularly informative about fundamentals (e.g. Philippon, 2009)
- However, for this channel to explain the *relative* predictive power of loan spreads one of the following must be true:
 - Loan markets reflect fundamental information more accurately compared to bond markets
 - There is additional fundamental information reflected in loan markets

SIZE EFFECT – SIZE DIFFERENCES

• Plausible, but not the whole story...

- Loan markets are populated with firms that may have limited access to alternative funding sources
- Loan market borrowers may be particularly sensitive to shocks to the balance sheets of **financial intermediaries** or financial frictions that emanate from their **own balance sheet**
- (Holmström and Tirole, 1997) both shocks to aggregate firm capital and intermediary capital will particularly affect low net worth firms.

-			Forecast hor	izon: $h = 3m$		
	IP	PEMP	UE	TCU	NEW	INV
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A. Private firms:						
ΔS_t^{Loan} Private	-0.367 (-5.016)	-0.232 (-3.318)	0.359 (3.300)	-0.346 (-5.342)	-0.272 (-3.980)	-0.235 (-4.011)
Adjusted R ² Incremental R ²	$0.355 \\ +0.166$	$0.666 \\ +0.048$	$0.290 \\ +0.132$	$0.397 \\ +0.147$	$0.144 \\ +0.078$	$0.581 \\ +0.071$
Panel B. Public firms:						
ΔS_t^{Loan} Small/Young	-0.324 (-3.449)	-0.188 (-2.072)	0.271 (1.882)	-0.289 (-3.270)	-0.261 (-2.987)	-0.223 (-2.997)
Adjusted R ² Incremental R ²	$\begin{array}{c} 0.330 \\ +0.141 \end{array}$	$0.649 \\ +0.031$	$0.239 \\ +0.080$	$0.367 \\ +0.117$	$0.136 \\ +0.070$	$0.575 \\ +0.065$
ΔS_t^{Loan} Large/Old	-0.189 (-2.667)	-0.148 (-2.004)	0.187 (1.483)	-0.161 (-2.418)	-0.219 (-3.048)	-0.155 (-2.098)
Adjusted R ² Incremental R ²	0.274 + 0.085	$0.637 \\ +0.020$	$0.206 \\ +0.048$	$0.321 \\ +0.071$	$0.118 \\ +0.051$	$0.553 \\ +0.043$

- Loan spreads of *financially constrained* firms have higher predictive power.
 - Private firms, small & young firms

Panel C. Public firms not	active in the be	ond market:				
ΔS_t^{Loan} Small/Young	-0.327 (-3.665)	-0.192 (-2.132)	0.278 (1.931)	-0.292 (-3.482)	-0.271 (-3.186)	-0.223 (-3.232)
Adjusted R ² Incremental R ²	$0.333 \\ +0.144$	$0.651 \\ +0.033$	$0.243 \\ +0.085$	$0.370 \\ +0.120$	$0.142 \\ +0.075$	$0.576 \\ +0.066$
ΔS_t^{Loan} Large/Old	-0.181 (-3.337)	-0.148 (-2.184)	0.178 (1.521)	-0.157 (-3.021)	-0.188 (-3.032)	-0.145 (-1.996)
Adjusted R ² Incremental R ²	$0.272 \\ +0.083$	$0.638 \\ +0.020$	$0.204 \\ +0.045$	$0.320 \\ +0.070$	$0.108 \\ +0.042$	$0.551 \\ +0.041$
Controls in Panels A-C:						
Term Spread	✓	1	1	1	✓	✓
FFR	√	1	√	~	~	1
$\Delta S_t^{Bond PC}$	√	1	✓	✓	~	✓
Observations	241	241	241	241	241	241

• Even within the set of no-bond firms, a loan spread constructed using young and small firms still has significantly more predictive power

-			Forec	ast horizon: h	= 3m		
Panel A.	IP	IP	IP	IP	IP	IP	IP
-	(1)	(2)	(3)	(4)	(5)	(6)	(7)
ΔS_{\star}^{Loan}	-0.405				-0.445		
£	(-5.600)				(-4.112)		
ΔS_{t}^{Loan} Small/Young						-0.375	-0.406
						(-4.115)	(-3.400)
ΔS_t^{Bond}		-0.207					
		(-2.650)					
ΔS_t^{Bond} Small/Young			-0.244		0.014		-0.018
			(-2.490)		(0.138)		(-0.184)
ΔS_t^{Bond} Large/Old				-0.215			
				(-2.582)			
Term Spread	1	1	1	1	1	1	1
FFR	1	1	1	1	1	1	1
Adjusted R ²	0.335	0.228	0.229	0.216	0.337	0.320	0.330
Incremental R ²	+0.146	+0.039	+0.040	+0.027	+0.148	+0.131	+0.141
Observations	241	241	209	209	209	241	209

• It is the set of borrowers without bond market access that explains the largest part of the additional predictive power of the loan spread.

- A no-friction explanation appears unlikely!!

• *Type* of frictions?

- Loan market borrowers may have limited funding alternatives and hence are particularly sensitive to shocks to the balance sheets of financial intermediaries
- Reduced capacity and/or willingness of intermediaries to provide credit to the economy which is reflected in credit spreads
 - A deterioration in the health of intermediaries (e.g. Holmström and Tirole, 1997)
 - Frictions in raising new capital (e.g. He and Krishnamurthy, 2013; Gertler and Kiyotaki, 2010)
 - Fluctuations in collateral value (e.g. Kiyotaki and Moore, 1997)
- Approach: Decompose loan spread into i) "predicted spread" and ii) "Excess loan premium" (ELP) (Gilchrist and Zakrajšek, 2012)

ELP is more correlated with bank ROA and credit conditions of small firms.

			Forecast horizo	n: h = 3 month		
	IP	PEMP	UE	TCU	NEW	INV
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A.						
ΔELP_t	-0.265 (-4.682)	-0.194 (-3.784)	0.218 (2.392)	-0.236 (-4.516)	-0.240 (-3.869)	-0.187 (-2.876)
$\Delta \hat{S}_t^{Loan}$	-0.373 (-5.009)	-0.150 (-3.043)	0.345 (3.324)	-0.361 (-5.324)	-0.179 (-2.197)	-0.205 (-3.576)
Adjusted \mathbb{R}^2 Incremental \mathbb{R}^2 Observations	$0.355 \\ +0.166 \\ 241$	$0.668 \\ +0.051 \\ 241$	$0.302 \\ +0.144 \\ 241$	$0.397 \\ +0.147 \\ 241$	$0.140 \\ +0.074 \\ 241$	$0.576 \\ +0.066 \\ 241$
Panel B.						
ΔEBP_t	-0.179 (-2.463)	-0.071 (-1.081)	0.114 (0.734)	-0.166 (-2.452)	-0.108 (-1.113)	-0.117 (-1.161)
$\Delta \hat{S}_t^{Bond}$	-0.197 (-2.289)	-0.046 (-0.674)	0.102 (0.708)	-0.187 (-2.363)	-0.127 (-1.224)	-0.137 (-1.580)
Adjusted \mathbb{R}^2 Incremental \mathbb{R}^2 Observations	$0.226 \\ +0.038 \\ 241$	$0.619 \\ +0.001 \\ 241$	$0.166 \\ +0.007 \\ 241$	$0.283 \\ +0.033 \\ 241$	$0.076 \\ +0.001 \\ 241$	$0.526 \\ +0.016 \\ 241$
Controls in Panels A-B: Term Spread FFR	√ √	4	4 4	۲ ۲	۲ ۲	√ √

- The forecasting power of ELP and predicted loan spread are larger compared to bond spread components.
 - Borrower balance-sheets appear important in understanding forecasting power (either fundamental risk or financial constraints).

	Forecast horizon: $h = 3$ month								
	IP	PEMP	UE	TCU	NEW	INV			
	(1)	(2)	(3)	(4)	(5)	(6)			
Panel A. Small and youn	g firms								
ΔELP_t	-0.267 (-3.443)	-0.156 (-2.220)	0.199 (1.703)	-0.227 (-3.142)	-0.272 (-3.067)	-0.174 (-2.271)			
$\Delta \hat{S}_t^{Loan}$	-0.303 (-2.366)	-0.165 (-1.754)	0.320 (1.924)	-0.298 (-2.507)	-0.191 (-2.003)	-0.144 (-2.130)			
Adjusted \mathbb{R}^2 Incremental \mathbb{R}^2 Observations	$0.348 \\ +0.159 \\ 241$	$0.654 \\ +0.036 \\ 241$	$0.264 \\ +0.106 \\ 241$	$0.385 \\ +0.135 \\ 241$	$0.160 \\ +0.093 \\ 241$	$0.569 \\ +0.059 \\ 241$			
Panel B. Large and old fi	rms								
ΔELP_t	-0.079 (-1.588)	-0.098 (-1.865)	0.070 (0.696)	-0.058 (-1.272)	-0.168 (-2.904)	-0.108 (-1.671)			
$\Delta \hat{S}_t^{Loan}$	-0.227 (-1.572)	-0.109 (-1.199)	0.254 (1.464)	-0.234 (-1.715)	-0.063 (-0.577)	-0.072 (-0.923)			
Adjusted \mathbb{R}^2 Incremental \mathbb{R}^2 Observations	$0.280 \\ +0.091 \\ 241$	$0.634 \\ +0.017 \\ 241$	$0.218 \\ +0.060 \\ 241$	$0.334 \\ +0.084 \\ 241$	$0.104 \\ +0.038 \\ 241$	$0.545 \\ +0.035 \\ 241$			
Controls in Panels A-B:	,	/	/	1	/	/			
FFR $\Delta S_t^{Bond PC}$	* * *	* *	* *	\$ \$	* *	\$ \$ \$			

• Key result: *Supply-side frictions* of banks adversely impact availability of credit for specifically small & young firms.

MECHANISM III: INVESTOR DEMAND

- Investor demand can be an important factor in explaining asset price dynamics (see, e.g., Koijen and Yogo, 2019),
 - Loan and bond prices might contain information about shocks to investors rather than to borrowers or dealer banks.
- Changes in investor demand can affect funding conditions for firms and thus have real effects, i.e., can be informative about economic developments (see, among others, Ben-Rephael, Choi, and Goldstein, 2020; Kubitza, 2021).

MECHANISM III: INVESTOR DEMAND

	Forecast horizon: $h = 3m$						
Panel A.	IP	PEMP	UE	TCU	NEW	INV	
	(1)	(2)	(3)	(4)	(5)	(6)	
ΔS_t^{Loan}	-0.347 (-4.609)	-0.240 (-3.463)	$\begin{array}{c} 0.333\\ (2.889) \end{array}$	-0.319 (-4.559)	-0.264 (-3.860)	-0.222 (-3.594)	
$CLO \ Primary \ Issuance_t$	$\begin{array}{c} 0.225 \\ (2.358) \end{array}$	0.101 (1.973)	-0.284 (-3.242)	0.237 (2.558)	0.070 (0.588)	0.117 (1.820)	
Term Spread FFR $\Delta S_t^{Bond PC}$	4	\$ \$ \$	\$ \$ \$	\$ \$	\$ \$ \$	\$ \$ \$	
Adjusted R ² Incremental R ² Observations	$0.371 \\ +0.182 \\ 228$	$0.689 \\ +0.072 \\ 228$	$0.341 \\ +0.183 \\ 228$	$0.401 \\ +0.151 \\ 228$	$0.131 \\ +0.065 \\ 228$	$0.601 \\ +0.090 \\ 228$	
Panel B.							
ΔS_t^{Loan}	-0.331 (-4.621)	-0.234 (-3.060)	$\begin{array}{c} 0.318 \\ (2.496) \end{array}$	-0.309 (-4.609)	-0.246 (-4.151)	-0.294 (-4.234)	
$Time \ on \ Market_t$	-0.259 (-2.599)	-0.157 (-2.779)	0.342 (3.783)	-0.270 (-2.745)	-0.087 (-0.915)	-0.023 (-0.365)	
Term Spread FFR $\Delta S_t^{Bond \ PC}$	\$ \$			\$ \$ \$			
Adjusted R ² Incremental R ² Observations	$0.387 \\ +0.198 \\ 213$	$0.653 \\ +0.035 \\ 213$	$0.351 \\ +0.193 \\ 213$	$0.414 \\ +0.164 \\ 213$	$0.151 \\ +0.085 \\ 213$	$0.550 \\ +0.039 \\ 213$	

• Are loan markets more susceptible to behavioural biases?

MECHANISM IV: BEHAVIOURAL

- Finally, there is a literature that highlights the role of extrapolative beliefs (see, e.g., Bordalo, Gennaioli, and Shleifer, 2018; Greenwood and Hanson, 2013; López-Salido, Stein, and Zakrajšek, 2017)
- Expectations about future economic development are overly influenced by the current state of the economy, investors become overly optimistic in response to positive news. This leads to narrower credit spreads and an (over-) extension of credit followed by a mean reversion in sentiment.

► HY Loan/Bond

SUMMARY OF MECHANISMS

- Evidence consistent with the *joint* role of borrower and intermediary constraints (Rampini and Viswanathan (2019)).
- Other potential channels explored in the literature:
 - Uncertainty drives borrower demand for credit (e.g. Baker, Bloom, and Davis (2016) , Pflueger, Siriwardane, and Sunderam (2020))
 Uncertainty
 - Investor sentiment might shape economic outcomes (Greenwood and Hanson (2013)), López-Salido, Stein, and Zakrajšek (2017))
 Sentiment

Size Effect Literature

CONCLUSION

- Introduce a novel measure of credit spreads using secondary loan market prices
- Loan spreads contain information about the future business cycle above and beyond existing credit spread indicators
- Differential predictive power is (in part) driven by compositional differences btw loan and bond markets (captures both borrower and bank frictions)

Thanks!

SECONDARY LOAN MARKET LIQUIDITY

- Pre-GFC bid-ask-spread: 68bps (vs. 34bps in the bond market)
- Secondary loan market is highly liquid.

Rating distribution - bond vs loan market

ALTERNATIVE STANDARD ERRRORS

			Forecast hori	zon: 3 months		
	IP	PEMP	UE	тси	NEW	INV
-	(1)	(2)	(3)	(4)	(5)	(6)
ΔS_t^{Loan}	-0.405 (-6.761)	-0.239 (-3.633)	0.362 (2.725)	-0.376 (-6.634)	-0.280 (-3.223)	-0.259 (-3.423)
Term Spread FFR $\Delta S_t^{Bond PC}$	\checkmark	\$ \$ \$	√ √ √	√ √ √	\$ \$ \$	\checkmark
Adjusted R ² Observations	0.335 241	0.672 241	0.286 241	0.375 241	0.140 241	0.575 241

• Results remain highly significant with Hansen-Hodrick standard errors.

▶ Back

	MAN	MAN	MAN	MAN	MAN	UE
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A. Germany						
ΔS_t^{HYBond}		-0.280				
ΔS_t^{Bond}		(1.001)	-0.187			
ΔS_t^{Loan}			(-1.659)	-0.379	-0.316	0.153
$\Delta S_t^{Bond PC}$				(-2.455)	-0.128	0.0004
Adjusted D ²	0 1 4 1	0.207	0 171	0.262	0.071	0.415
Incremental R ²	0.141	+0.065	+0.029	+0.1203	+0.129	+0.016
Contribution from ΔS_t^{Loan}	-	-	-	-	0.704	0.890
Observations	227	227	227	227	227	227

Spain Spreads plot

▶ Back

DYNAMICS - LOCAL PROJECTIONS

ALTERNATIVE TIMING CONVENTIONS

		Forecast horizon: 3 months									
	IP	PEMP	UE	тси	NEW	INV					
	(1)	(2)	(3)	(4)	(5)	(6)					
ΔS_t^{Loan}	-0.309 (-4.841)	-0.146 (-3.867)	0.325 (3.123)	-0.287 (-4.773)	-0.226 (-3.777)	-0.117 (-2.057)					
Term Spread FFR ∆ <i>S^{Bond PC}</i>	\checkmark	\checkmark	√ √ √	√ √ √	√ √ √	\$ \$ \$					
Adjusted R ² Incremental R ² LR Test(χ^2) Observations	0.361 +0.216 72.1 241	0.850 +0.026 41.3 241	0.240 +0.102 32.6 241	0.414 +0.191 70.2 241	0.160 +0.056 17.6 241	0.566 +0.023 14.7 241					

• Defines growth rate as the growth from t to t + 3

ALTERNATIVE TIMING CONVENTIONS

-			Forecast horiz	zon: 3 months		
	IP	PEMP	UE	тси	NEW	INV
-	(1)	(2)	(3)	(4)	(5)	(6)
ΔS_t^{Loan}	-0.252 (-3.597)	-0.190 (-4.839)	0.267 (3.728)	-0.228 (-3.538)	-0.243 (-3.918)	-0.201 (-3.931)
Term Spread FFR $\Delta S_t^{Bond \ PC}$	\checkmark \checkmark	\checkmark	\checkmark	√ √ √	\$ \$ \$	\checkmark
Adjusted R ² Incremental R ² LR Test(χ^2) Observations	0.452 +0.132 54.1 241	0.862 +0.045 71.4 241	0.389 +0.082 32.4 241	0.505 +0.113 52.0 241	0.123 +0.069 19.8 241	0.604 +0.063 37.9 241

 Defines growth rate as the growth from t to t + 3 and lag period as t - 3 to t

DYNAMICS - LOCAL PROJECTIONS

Back

OUT-OF-SAMPLE

		OOS horizon: $h = 3$ month				
	RMSE	Normalized RMSE	T - stat(p - value)			
	(1)	(2)	(3)			
Panel A. IP						
Baseline	0.0125	0.7033	-			
Baseline + $\Delta S_t^{Bond PC}$	0.0125	0.7027	-			
Baseline $+ \Delta S_t^{Loan}$	0.0113	0.6359	-2.836(0.005)			

- RMSE calculated via cross validation with expanding rolling window
- Loan spread significantly better at OOS forecasting

OUT-OF-SAMPLE

		OOS horizon: $h = 3$ month	
	RMSE	Normalized RMSE	T - stat(p - value)
	(1)	(2)	(3)
Panel A. IP			
Baseline + $\Delta S_{\pm}^{Bond PC}$	0.0125	0.7027	-
Baseline + ΔS_t^{Loan}	0.0113	0.6359	-2.836(0.005)
Panel R PEMP			
Baseline + $\Lambda S^{Bond PC}$	0.00328	0 4843	-
Baseline + ΔS_t^{Loan}	0.00315	0.4660	-1.115(0.266)
Panel C. UE			
Baseline + ΔS_t^{bond} / C	0.3182	0.7528	-
Baseline $+\Delta S_t^{LOBH}$	0.3014	0.7130	-1.583(0.115)
Panel D. TCU			
Baseline + $\Delta S_{t}^{Bond PC}$	0.9775	0.6823	-
Baseline + ΔS_t^{Loan}	0.9009	0.6289	-2.482(0.014)
Panel E NEW			
Baseline $\pm \Lambda S^{Bond PC}$	0 1031	0 7839	_
Baseline $+\Delta S_t^{Loan}$	0.0985	0.7493	-1.733(0.085)
D 15 MM			· · ·
Panel F. INV	0.0007	0.51.40	
Baseline + ΔS_t	0.0097	0.5142	-
Baseline $+\Delta S_t^{Loan}$	0.0092	0.4838	-1.652(0.100)

	MAN	MAN	MAN	MAN	MAN	UE
	(1)	(2)	(3)	(4)	(5)	(6)
Panel B. France						
ΔS_t^{HYBond}		-0.241 (-1.661)				
ΔS_t^{Bond}		()	-0.138 (-0.937)			
ΔS_t^{Loan}			(,	-0.338 (-2.167)	-0.289 (-2.170)	0.263
$\Delta S_t^{Bond PC}$					-0.102 (-1.080)	0.065 (0.727)
Adjusted R ²	0.097	0.143	0.110	0.192	0.195	0.217
Incremental R ²	-	+0.046	+0.013	+0.095	+0.098	+0.070
Contribution from ΔS_t^{Loan}	-	-	-	-	0.730	0.775
Observations	188	188	188	188	188	188

	MAN	MAN	MAN	MAN	MAN	UE
	(1)	(2)	(3)	(4)	(5)	(6)
Panel C. Spain						
ΔS_t^{HYBond}		-0.292				
ΔS_t^{Bond}		(1.555)	-0.188			
ΔS_t^{Loan}			(-1.184)	-0.238	-0.122	0.103
$\Delta S_t^{Bond PC}$				(-1.972)	-0.224 (-1.398)	0.085 (1.173)
Adjusted R ²	0.132	0.180	0.153	0.180	0.207	0.712
Incremental R ²	-	+0.069	+0.030	+0.048	+0.075	+0.021
Contribution from ΔS_t^{Loan}	-	-	-	-	0.371	0.553
Observations	187	187	187	187	187	187

2000 2005 2010 2015 2020

CREDIT CONDITIONS – EUROPE

	Credit conditions based	d on loan officer surveys
	(1)	(2)
Germany		
ΔS_t^{Loan}	0.376 (3.748)	
ΔS_t^{Bond}		0.159 (1.182)
Adjusted R ²	0.128	0.011
Observations	70	70
France		
ΔS_{t}^{Loan}	0.480	
	(3.545)	
ΔS_t^{Bond}		0.329 (1.436)
Adjusted R ²	0.218	0.094
Observations	64	64
Spain		
ΔS_{t}^{Loan}	0.370	
	(2.018)	
ΔS_t^{Bond}		0.176 (1.008)
Adjusted R ²	0.122	0.015
Observations	63	63

BORROWER RATING

• Half of loan market borrowers are private/unrated firms. Limited overlap between bond and loan borrowers

BORROWER RATING

	Industrial production; Forecast horizon: 3 months				
	(1)	(2)	(3)	(4)	
$\Delta S_t^{Loan}[BBB]$	-0.101 (-1.532)				
$\Delta S_t^{Loan}[BB]$. ,	-0.260			
-1		(-3.600)			
$\Delta S_t^{Loan}[B \text{ and below}]$			-0.422		
			(-5.311)		
ΔS_t^{Loan} [Not Available]				-0.410	
				(-3.972)	
Term Spread	\checkmark	\checkmark	\checkmark	\checkmark	
FFR	\checkmark	\checkmark	\checkmark	\checkmark	
Adjusted R ²	0.195	0.251	0.345	0.336	
Incremental R ²	+ 0.006	+0.062	+0.156	+0.147	
Observations	241	241	241	241	

- Half of loan market borrowers are private/unrated firms. Limited overlap between bond and loan borrowers
- Repricing of risk by banks may be better reflected in loan spread

▶ Back

ALTERNATIVE EXPLANATION I: UNCERTAINTY

-	Industrial Production; Forecast horizon: 3 months						
_	(1)	(2)	(3)	(4)	(5)		
ΔS_t^{Loan}	-0.264	-0.385	-0.321	-0.245	-0.489 (-3.672)		
VIX	-0.351	(0.020)	(0.000)	(2.302)	(0.012)		
EPU Index	()	-0.106 (-1.592)					
FinUn Index			-0.408 (-3.383)				
'Recession Index'				-0.500 (-4.190)			
PVS Index					0.238 (1.647)		
Term Spread FFR	\checkmark	\checkmark	\checkmark	\checkmark	√ √		
Adjusted R ² Observations	0.407 241	0.341 241	0.458 241	0.516 241	0.255		

- Uncertainty proxies contain predictive power for future outcomes
- Uncertainty can, however, not explain the incremental predictive power of the loan spread

ALTERNATIVE EXPLANATION II: SENTIMENT

- Investor sentiment appears important to understand credit spreads:
 - Credit spreads are too narrow during booms and proceed economic downturns (Greenwood and Hanson (2013)), López-Salido, Stein, and Zakrajšek (2017))
 - Investors under-price risk in good times, creating a credit boom. During downturns spreads overract in the opposite direction (Bordalo, Gennaioli, and Shleifer (2018)).
- Our focus in on the *relative* predictive power vis-a-vis bond spreads
- Borrower fundamentals drive relative predictive power of the loan spread (not excess loan premium, which would capture sentiment)

SIZE EFFECT – LITERATURE

• Evidence in the literature that it is the large firms that *drive* the business cycle

- E.g. Crouzet and Mehrotra (2020), Gabaix (2011)

- On the other hand, smaller firms are more sensitive to changes in economic conditions
 - E.g. Begenau and Salomao (2019), Pflueger, Siriwardane, and Sunderam (2020), Crouzet and Mehrotra (2020)
- Our evidence suggests that smaller firms contain *information* about future business cycle movements

Alternative outcome variables - Bond Spread

-0.4

0.0

0.4

50 / 29

MECHANISM III: BEHAVIOURAL

_	Forecast horizon: $h = 3m$						
Panel A.	IP	PEMP	UE	TCU	NEW	INV	
_	(1)	(2)	(3)	(4)	(5)	(6)	
ΔS_t^{Loan}	-0.335 (-4.319)	-0.240 (-3.488)	0.333 (2.868)	-0.306 (-4.280)	-0.249 (-3.606)	-0.218 (-3.381)	
HY Loan Share	0.209 (3.387)	0.090 (1.830)	-0.176 (-2.397)	0.251 (4.467)	0.111 (1.718)	$\begin{array}{c} 0.104 \\ (2.300) \end{array}$	
Term Spread FFR $\Delta S_t^{Bond PC}$	4	4	4 4	4	\$ \$ \$	4	
Adjusted R ² Incremental R ² Observations	$0.381 \\ +0.192 \\ 241$	$0.677 \\ +0.060 \\ 241$	$0.308 \\ +0.150 \\ 241$	$0.438 \\ +0.188 \\ 241$	$0.145 \\ +0.079 \\ 241$	$0.585 \\ +0.074 \\ 241$	
Panel B.							
ΔS_t^{Loan}	-0.336 (-4.000)	-0.235 (-3.120)	0.313 (2.398)	-0.310 (-4.018)	-0.251 (-3.315)	-0.217 (-3.051)	
HY Bond Share	0.251 (3.279)	0.145 (2.715)	-0.315 (-4.028)	0.245 (3.282)	0.092 (1.008)	0.120 (1.781)	
Term Spread FFR $\Delta S_t^{Bond PC}$		4 4	4 4	4 4 4	4 4 4	4	
Adjusted R ² Incremental R ² Observations	0.390 + 0.201 241	0.686 +0.068 241	0.360 +0.202 241	0.427 +0.177 241	0.141 + 0.075 241	0.585 +0.075 241	

▶ Back

REFERENCES I

- BAKER, S., N. BLOOM, AND S. DAVIS (2016): "Measuring Economic Policy Uncertainty," *The Quarterly Journal of Economics*, 131, 1593–1636.
- BEGENAU, J., AND J. SALOMAO (2019): "Firm Financing over the Busines Cycle," *Review of Financial Studies*, 32(4), 1235–1274.
- BEN-REPHAEL, A., J. CHOI, AND I. GOLDSTEIN (2020): "Mutual fund flows and fluctuations in credit and business cycles," *Journal Financial Economics*.
- BORDALO, P., N. GENNAIOLI, AND A. SHLEIFER (2018): "Diagnostic Expectations and Credit Cycles," *Journal of Finance*, (1), 199–227.
- CROUZET, N., AND N. MEHROTRA (2020): "Small and Large Firms over the Business Cycle," *American Economic Review*, 110(11).

REFERENCES II

GABAIX, X. (2011): "The Granular Origins of Aggregate Fluctuations," *Econemetrica*, 79(3).

GERTLER, M., AND N. KIYOTAKI (2010): "Financial Intermediation and Credit Policy in Business Cycle Analysis," *Handbook of Macroeconomics*.

GILCHRIST, S., AND E. ZAKRAJŠEK (2012): "Credit Spreads and Business Cycle Fluctuations," *American Economic Review*, 102(4), 1692–1720.

- GREENWOOD, R., AND S. G. HANSON (2013): "Issuer Quality and Corporate Bond Returns," *Review of Financial Studies*, 26, 1438 – 1525.
- GÜRKAYNAK, R. S., B. SACK, AND J. H. WRIGHT (2007):
 "The U.S. Treasury yield curve: 1961 to the present," *Journal of Monetary Economics*, 54(8), 2291–2304.

REFERENCES III

- HE, Z., AND A. KRISHNAMURTHY (2013): "Intermediary Asset Pricing," *American Economic Review*, 103(2), 732–770.
- HOLMSTRÖM, B., AND J. TIROLE (1997): "Financial Intermediation, Loanable Funds, and the Real Sector," *Quarterly Journal of Economics*, 112(3), 663–691.
- KIYOTAKI, N., AND J. MOORE (1997): "Credit Cycles," *Journal* of *Political Economy*, 105(2), 211–248.
- KOIJEN, R. S. J., AND M. YOGO (2019): "A Demand System Approach to Asset Pricing," *Journal of Political Economy*, 127(4), 1475–1515.
- KUBITZA, C. (2021): "Investor-Driven Corporate Finance: Evidence from Insurance Markets," *Working Paper, Bonn University*.

REFERENCES IV

LÓPEZ-SALIDO, D., J. C. STEIN, AND E. ZAKRAJŠEK (2017): "Credit-market sentiment and the business cycle," *Quarterly Journal of Economics*, 132(3), 1373–1426.

PFLUEGER, C., E. SIRIWARDANE, AND A. SUNDERAM (2020): "Financial Market Risk Perceptions and the Macroeconomy," *Quarterly Journal of Economics*, 135(3), 1443 – 1491.

PHILIPPON, T. (2009): "The Bond Market's q," *Quarterly Journal of Economics*, 124(3), 1011–1056.

RAMPINI, A. A., AND S. VISWANATHAN (2019): "Financial Intermediary Capital," *Review of Economic Studies*, 86, 413–455.